
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

1 Instructor: Daniel Llamocca

Unit 3- External Peripherals: Interfacing

SERIAL COMMUNICATION

SERIAL DATA TRANSMISSION WITH UART

UART INTERFACE
▪ This interface transfers data asynchronously (clock is not transmitted,

transmitter and receiver use their own clocks).
▪ Data communication: RXD (receive pin), TXD transmit pin). The FT2232 chip

inside the Nexys-4 board handles the USB communication with a computer.
▪ Format of a Frame: Start bit (‘0’), 8 to 9 data bits (LSB transmitted first),

optional parity bit, and a stop bit (‘1’).
▪ Transmitter: Simple design that transmit the data frame at the Baud rate (or bit rate in bps).
▪ Receiver: It uses a clock signal whose frequency is a multiple (usually 16) of the incoming data rate.

DIGITAL SYSTEM: UART TRANSMITTER (FSM + Datapath circuit)
▪ This circuit sends data from the Artix-7 FPGA (that is read via

switches) to the FT2232 chip.
▪ For a baud rate of 9600 bps, the Baud rate clock is 9600 Hz. The bit

time is 104.2 us.

Then: 𝑁 =
1

9600⁄

10 𝑛𝑠
= 10416. We need a counter modulo-𝑁 in order

to generate the proper time interval (bit time of 104.2 us).

▪ Generic component (counter): Behavior on the clock tick:

If E=0, the count stays.
if E = 1 then

 if sclr = 1 then

 Q  0

 else

 Q  Q+1

 end if;

end if;

* z=1 if Q = N-1 (max. count)

✓ Note that the way this counter (my_genpulse_sclr) is designed,

once the maximum count is reachd, asserting enable to ‘1’ will
set the count to 0.

Baud rate clock

TXD DO D1 D2 D3 D4 D5 D6 D7 stopstart

TXD

FT2232

RXD

Artix-7 FPGA

C4

D4 (TXD)

(RXD)
Micro

USB

FSM
LR
ER

zC

Q n

counter
0 to N-1

zC

E

sclr

EC

RIGHT SHIFT

REGISTER
s_L
E din

SW

8

0

Q 3

counter
0 to 7

zQ

E

sclr

EQ

00

8

zQ

EC

EQ

dout

TXD

clock

resetn

E

so

S1

S2

resetn=0

TXD  1

TXD  1

1

0

LR, ER  1

EC  1 (C C+1)

0

1

S3

TXD  0

1

zC
0

EC  1 (C 0) If max count is reached,
EC=1 makes C=0

EC  1 (C  C+1)

S4

TXD  so

1

zC
0

EC  1 (C 0), ER  1

EQ  1 (Q  Q+1)

1

zQ
0

EQ  1 (Q 0)
If max count is reached,
EQ=1 makes Q=0

EC  1 (C C+1)

S5

TXD  1

1
zC

0
EC  1 (C 0)

STOP bit

START bit

8 DATA
bits

E

E

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

2 Instructor: Daniel Llamocca

EXAMPLE: PS/2 INTERFACE FOR KEYBOARD

PS/2 Interface
▪ This interface transfers data synchronously (clock is transmitted

alongside data).
▪ The PIC24FJ128 chip (auxiliary function microcontroller) inside the

Nexys-4 DDR board emulates an old-style PS/2 bus and presents a
PS/2 protocol to the FPGA. The PS/2 bus signals are converted to the
USB protocol. Thus, we can interface with a USB keyboard or mouse
as if they were using the PS/2 protocol.

▪ PS/2 bus uses a bidirectional two-wire serial bus (PS2_CLK and

PS2_DATA) to communicate with a host. The FPGA plays the role of the host.

▪ Format of a Frame: Start bit (‘0’), 8 data bits (LSB transmitted first), parity bit (odd), and a stop bit (‘1’).
▪ Timing Diagram: Data (1 byte) is captured on the falling edge. The following are times found in the Nexys-4 DDR datasheet:

T  [60 us,100 us], tSU, tHD  [5 us,25 us]

BYTE READ - DIGITAL SYSTEM (FSM + Datapath)
▪ This system can only receive data from the

PIC24FJ128. Thus, it only reads the PS2_CLK and

PS2_DAT signals.

▪ 10-bit output: |STOP|parity|D7-D0|.

▪ Counter: EQ=1  Q  Q+1. Note that once the

maximum count is reached, asserting enable to ‘1’
resets the count to 0.

▪ Falling Edge Detector. This FSM detects transitions
from 1 to 0 on ps2cf.

PS2_CLK

PIC24FJ128

PS2_DAT

Artix-7 - Nexys4

F4

B2U
S
B

H
o
s
t

C
o
n
n
e
c
t
o
r

PS2_CLK

PS2_DAT DO D1 D2 D3 D4 D5 D6 D7 stopstart p

T tSU tHD

S1

S2

resetn=0

0

1

f all_edge  1

1

ps2cf
0

ps2cf

Falling Edge Detector

clock

ps2cf

resetn

fall_edge

S1

S2

resetn=0

1

E, EQ  1

1

fall_edge
0

FSM MAIN

0

1
ps2d

fall_edge
0

1 0
zQ

done_d  1

S
T
A

R
T
 b

it
8

 D
A

T
A

 b
its

+
 P

a
rity

 +
 S

T
O

P
 b

it

EQ
FSM
MAIN

RIGHT SHIFT

REGISTER
s_L
E dout

Q
4

counter
0 to 9

zQ

E

10

zQ

din

clock

resetn

0

FSM

ps2d

ps2c f ilter

DOUT

done_d

my_ps2read

falling edge
detector

ps2cf

fall_edge

done

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

3 Instructor: Daniel Llamocca

▪ Filter: It makes sure that ps2c (PS2_CLK) is constant for at least 8 clock cycles (FPGA operating frequency) before ps2cf

is assigned a ‘1’ or a ‘0’. This mitigates the presence of glitches that could be interpreted as falling edges. The choice of 8

cycles is based on actual testing (use more cycles if you notice glitches affecting the functioning of the circuit.

INTERFACING WITH A PS/2 KEYBOARD
▪ Data from the PS/2 keyboard is given as an 8-bit scan code (see Nexys4-DDR datasheet for a list of scan codes). The

following is the protocol that is used when a key is pressed:
✓ If a key is held, the scan code is sent repeatedly every 100 ms.
✓ When the key is released, an F0 key-up code is sent, followed by the scan code of the released key.

✓ If a key can be shifted to produce a new character (like a capital letter), then a shift character is sent alongside the scan
code. Example: F0 12 [scan code].

✓ Some keys, called extended keys, send an E0 ahead of the scan code. When an extended key is released, an E0 F0

key-up code is sent, followed by the scan code.
▪ The circuit presented here cannot read extended keys or shifted keys, only normal keys. It waits for the key-up code (F0),

and then it captures the scan code. For example, for ‘U’, the PS/2 keyboard sends |F0|3C|, this circuit retrieves 3C.

▪ The block my_ps2read outputs 10 bits when it receives any code from the PS/2 keyboard. Example:

✓ DOUT10 = 1111000000, where parity bit is 11000000̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 1

✓ DOUT10 = 1100111100, where parity bit is 00111100̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 1

✓ DOUT10 = 1100011100, where parity bit is 00011100̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0

▪ The timing diagram shows when the ‘U’ key is pressed and released: F0 (key-up code) is sent first, then 3C (scan code).

Filter

RIGHT SHIFT

REGISTER
s_L
E

8

din
0

1

ps2c

a b

ps2cfD

E

a b D E

0 0 X 0

0 1 0 1

1 0 1 1

1 1 0 1

clock

ps2c

ps2cf

all 1's? all 0's?

3CF0

FSM

clock

resetn

ps2d

ps2c
my_ps2read

my_ps2keyboard

Er

D Q
E

DOUT
10 8

done_r
DOUT8

8

S1

S2

resetn=0

1

0

Er  1

1

done_r
0

done_r

dout8=F0
no

y es

KEY-UP
CODE

SCAN
CODE

clock

done_r

DOUT8

DOUT 3C

8
DOUT10

33C3F0DOUT10

done

done

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

4 Instructor: Daniel Llamocca

SPI (ACCELEROMETER)

SPI INTERFACE
▪ Simple 4-wired synchronous (clock is transmitted) serial interface.
▪ SPI logic signals:

✓ SCLK: Serial clock. Generated by Master.
✓ MOSI: Master Output, Slave Input. Generated by Master.
✓ MISO: Master Input, Slave Output. Generated by Slave.
✓ /CS: Chip select (or Slave Select). Generated by Master.

▪ Messages are supported that are multiple of 8 bits.
▪ Clock polarity (CPOL) and Phase (CPHA):

▪ CPOL = 0: Base value of SCLK is 0.

✓ CPHA=0: Data is captured on rising edge, data is output on falling edge.
✓ CPHA=1: Data is captured on falling edge, data is output on rising edge.

▪ CPOL = 1: Base value of SCLK is 1.
✓ CPHA=0: Data is captured on falling edge, data is output on rising edge.
✓ CPHA=1: Data is captured on rising edge, data is output on falling edge.

▪ It is commonly used for short distance communications within embedded systems. Microcontrollers and FPGA designs use

SPI to communicate with internal/external peripherals. Large variety of SPI-capable peripherals available: sensors (e.g.:
temperature, pressure), ADCs, DACs, touchscreens, memories, LCDs, SD cards.

ACCELEROMETER ADXL362
▪ This 3-axis MEMS device operates as a SPI slave device. We read/write data via a register-based interface: we can write/read

a byte or many bytes per bus transaction.
▪ ADXL362 parameters (range, resolution, ODR are selectable):

✓ Range:  2g (default at reset),  4g,  8g.
✓ Resolution: 1mg/LSB (default at reset), 2 mg/LSB, 4 mg/LSB
✓ Output data rate (ODR): 12.5 – 400 Hz. Default at reset: 100 Hz.
✓ Output resolution: 12 bits. Representation: signed.

▪ CPOL = 0, CPHA = 0. Many SPI devices work very similarly, although we need to comply with specific timing parameters.

Accelerometer: Basic Controller (code available here)
▪ Operation: We first configure the appropriate ADXL362 registers and then proceed to read 8-bit registers. A simple

operation mode is listed here. Refer to the ADXL362 datasheet for a complete list of registers and operation modes.
✓ Reset the ADXL362. Write 0x52 on SOFT_RESET (0x1F) register.

✓ Activate measurement mode. Write 0x02 on POWER_CTL (0x2D) register.

✓ Read any 8-bit register (one per bus transaction). See ADXL362 datasheet for complete list.

▪ The basic controller is depicted on the right. The

block wr_reg_adxl362 is the most important: it
handles the SPI communication based on address,
data and write/read decision. Asserting the 𝑠𝑡𝑎𝑟𝑡
signal initiates a transaction. When the operation is
completed, the signal 𝑑𝑜𝑛𝑒 is asserted for one clock

cycle. If reading data, it appears on 𝑜𝑑𝑎𝑡𝑎. A new

transaction can be started on the next cycle after
𝑑𝑜𝑛𝑒 = 1.

MOSI

ADXL362

MISO

Artix-7 FPGA
Nexys-4 DDR

F14

E15

/CS

SCLK

D15

F15

MasterSlave

SCLK (CPOL=0)

MOSI/MISO (CPHA=0)

SCLK (CPOL=1)

/CS

MOSI/MISO (CPHA=1)

MSB or LSB LSB or MSB

done

sel
2

8
start
wr_rd

wr_reg_adxl362

odata

/CS MOSI MISO SCLK

FSM address

data

8

8

done E_odata

D

E

Q
8

E_odata

clock

resetn

done O
D

A
T

A
_R

E
G

SCLK_T

http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

5 Instructor: Daniel Llamocca

▪ FSM: It issues commands to configure the 2 ADXL362 registers and
then read (cyclically) from one of four 8-bit ADXL362 registers
(selected by the sel input). Data is fetched on the output register.

Here, we can read the low-precision 8-bit X, Y, Z measurements
(0x08, 0x09, 0x0A) and the Status Register (0x0B).

▪ wr_reg_adxl362: This circuit handles the SPI communication with

the ADXL362. The user provides address, data, and read/write.
Then, a read/write SPI transaction is executed. At every transaction,
we write or retrieve 8 bits of data. When writing to the ADXL362, 3
bytes are transmitted: |command|address|data|. When reading

from the ADXL362, 2 bytes are transmitted |command|address|,

and 1 byte is read (data) and placed on odata.

✓ Circuit Design: It involves implementing the SPI protocol and
complying with the ADXL362 timing parameters (see datasheet):
 CSS (/CS Setup Time): 100 ns
 tCSH (/CS Hold Time): 20 ns

 tCSD (/CS Disable Time): 20 ns
 tSU (Data Setup Time) = tHD (Data Hold Time): 20 ns
 fSCLK: 2.4 (only when using FIFO) – 8000 KHz.
 tHIGH (SCLK High Time) = tLOW (SCLK Low Time) = 50 ns.

Note that these times only constrain the duty cycle when
using large frequencies. The maximum frequency is 8 MHz.

✓ SCLK: not defined by the standard (usually a few MHz). This is
specified by the Slave Device (ADXL362: fSCLK  8000 KHz).

✓ This design uses a free running SCLK. To comply with the timing
parameters: TSCLK/2-(tCSD+tCSH)  CSS → TSCLK  280 ns (fSCLK 
3.57 MHz). For TSCLK=280 ns, we have SCLK_T = 28 (at

clock=100 MHz) as the minimum possible value.
✓ To display data on LEDs or 7-segment displays, you need an

appropriate refreshment rate. We can choose TSCLK=1 ms
(fSCLK=1 KHz) → SCLK_T=106. Since there are 24 SCLK periods

in a reading transaction, data is refreshed at 24 ms per sample.
✓ FSM_SCLK: It generates a free running clock of period SCLK_T

and 50% DC along with rising and falling edge detectors.

S1
resetn=0

address  0x1F

data  0x52

wr_rd  1, start  1

0

1

address  0x08

done

S2

S3

address  0x2D

data  0x02

wr_rd  1, start  1

0

1

done

S4

S5

data  0xXX

wr_rd  0, start  1

address  0x09 address  0x0A

address  0x0B

11
sel

00

01 10

01
done

S6

E_odata  1

FSM_MAIN
wr_rdq

zR
zF

Ei Ed Ea Eo

/CS

E

L

LEFT

E

L

LEFT

E

L

LEFT

1

s

2

0

2

8

8

01

0x0A 0x0B

wr_rd

w
r_

rd
q

dout

dout

dout

command

write read

Ei

address

data

Ea

Ed

E

LEFT

din
Eo

8

E

L

MISO

Q

counter

0 to 7

E

sclr z
zQ

E
Q

sc
lr
Q

FSM_SCLK

start SCLK

Q

counter 0 to

SCLK_T/2-1

E

sclr z
zT

E
T

sc
lr
T

zR

zF

MOSI

wr_reg_adxl362

S1
resetn=0

ET, sclrT  1

0

1

SCLK  0

zT

S2

S3

ET  1

ET, sclrT  1

zR  1

SCLK  1

0

1

zT ET  1

ET, sclrT  1

zF  1

(T  0)

(T  0)

(T  T+1)

(T  T+1)

0

1

start

(T  0)

FSM_SCLK

L

done

odata

start

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

6 Instructor: Daniel Llamocca

✓ FSM_MAIN: handles the SPI communication and complies with the ADXL362 timing parameters. Command, address,
data (MSB is sent first), same when reading. Note that TCSD = TCSH = 2 (20 ns).

To comply with the timing parameters, we always wait until the last falling edge in a reading or writing cycle, then wait
for TCSH cycles, set /CS=1 for TCSD cycles and then we are back in State S1 for a new transaction.
Note how we embed the counters for qTCSD and qTCSH inside the FSM.

✓ Other approaches do not have a free running SCLK, but instead they only activate it when /CS=0. This approach might
make the controlling of the timing parameters simpler (depending on the timing parameters).

S1
resetn=0

/CS  1

0

1

s  0

zF

S2

Ei  1

0

1

start

L  1

Ei, Ea, Ed  1

0

1

zQ EQ  1

EQ, sclrQ  1

0

1

s  1

zF

S3

Ea  1

0

1

zQ EQ  1

EQ, sclrQ  1

1

0

wr_rdq

S5

S4

0

1

s  2

zF

S4

Ed  1

0

1

zQ EQ  1

EQ, sclrQ  1

0

1

zR

S5

Eo  1

0

1

zQ EQ  1

EQ, sclrQ  1

01
zF

S6

S7

no

yes

qTCSH  qTCSH +1

qTCSH  0

/CS  1

S8

no

yes

qTCSD  qTCSD +1

done  1

qTCSD  0

1

0

start

S1

qTCSH=TCSH-1

qTCSD=TCSD-1

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

7 Instructor: Daniel Llamocca

I2C (TEMPERATURE SENSOR)

I2C (Inter-Integrated Circuit) INTERFACE
▪ Simple 2-wired synchronous (clock is transmitted) serial interface.
▪ I2C logic signals:

✓ SCL: Serial clock. Generated by Master, defined by the Slave device. The standard
specifies a Fast Mode (up to 400 KHz), a High Speed Mode (up to 3.4 MHz), and
an Ultra-Fast Mode (up to 5 MHz).

✓ SDA: Bi-directional serial data.
▪ In general, SCL and SDA are open-drain. There can be one Master and many Slaves.

The Master device puts the slave address on the bus, and the slave device with the
matching address acknowledges the Mater.

▪ Slave Address: Unique identifier of a device. 7-bits wide.
▪ Communication on the I2C bus:

✓ It starts when the master puts the START condition (S) on the bus (a high-to-low transition on SDA while SCL is high).
The bus is considered to be busy until the Master puts a STOP condition (P) on the bus (a low-to-high transition on SDA
while SCL is high).

✓ I2C data: Transferred in 8-bit packets. There is no restriction to the number of bytes transmitted per data transfer. Each
byte transferred must be followed by an acknowledge signal (ACK). ACK (0) is generated by the Slave.

✓ After a START condition (S), the Master writes the 7-bit Slave Address followed by a Read/Write bit, then ACK. Then, the
Master writes/reads bytes of data, each byte followed by an ACK. When writing, after the last written byte (followed by
ACK), data transmission is terminated by the Master with a STOP condition (P). When reading, only on the last byte, the
Master must generate a NACK (Not acknowledge) bit, and then a STOP condition (P). The Master can also generate a
repeated START condition (Sr) without first generating a STOP condition (P) to signal that the bus is still busy.

✓ Data bits are read on the SCL rising edge. We must comply with the Slave device timing parameters: tSU:DAT, tHD:DAT,
tSU:STA, tHD:STA, tSU:STO. Unlike a flip flop, tHD:DAT (hold time) is defined as the time the data bit should be on the bus after
SCL is high (i.e., after the falling edge).

▪ I2C is commonly used for attaching lower-speed devices to processors and microcontrollers in short-distance, intra-board

communication. Large variety of I2C-capable peripherals available: sensors (e.g.: temperature, acceleration, pressure), ADCs,
DACs, touchscreens, memories, LCDs, SD cards.

TEMPERATURE SENSOR ADT7420
▪ This high accuracy digital temperature sensor operates as an I2C slave device. We read/write data via a register-based

interface: we can write/read a byte or two bytes per bus transaction.

▪ ADT7420 parameters (resolution is selectable):
✓ Output resolution: 13 bits (default at reset), 16 bits. Representation: FX signed.
✓ Resolution: 0.0625C per LSB (13-bit mode, default at reset), 0.0078125C per LSB (16-bit mode).

 16-bit mode: FX Format [16 7]. Temperature (C):
−215𝑏15+∑ 𝑏𝑖2𝑖14

𝑖=0

27

 13-bit mode: FX Format [13 4]. This is just the 13 MSBs of the 16-bit result. Temperature (C):
−212𝑏12+∑ 𝑏𝑖2𝑖11

𝑖=0

24

 According to the formulas, the temperature range is [−256C, 256C). However, in practice the ADT7420 is

guaranteed to measure temperature between -40C and 150C.
✓ Slave Address: 10010A1A0. A1A0 bits are configurable. Nexys-4 DDR-Board: A1A0 = 11 → Slave Address: 0x4B.

Temperature Sensor: Basic Controller (code available here)
▪ Operation: We first configure the appropriate ADT7420 registers and then proceed to read 8-bit registers. A simple

operation mode is listed here. Refer to the ADT7420 datasheet for a complete list of registers and operation modes.
✓ Configure the 16-bit mode. Write 0x80 on CONFIG (0x03) register.

✓ Read any 8-bit register (one per bus transaction).

ADT7420

Artix-7 FPGA
Nexys-4 DDR

SCL

SDA

C14

C15

MasterSlave

3.3v

D0D7 D6 D5 D4 D3 D2 D1

A0

R/W

A0 R/WA5 A4 A3 A2 A1 ACK

S

SCL

A6 ACKD7 D6 D5 D4 D3 D2 D1 D0

tHD:STA tSU:STO

A0A5 A4 A3 A2 A1 ACKA6 NACK

tHD:DAT tSU:DAT

SDA

SDA

P

R/W D0A3 A2 A1 ACK D7 D6 D5 D4 D3 D2 D1SDA ACK

SCL

A5 A4A6... ...

Sr

tSU:STA

http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

8 Instructor: Daniel Llamocca

▪ The Basic Controller interacts with the following registers: (refer to the ADT7420 datasheet for a complete list of registers).
Reg. Address Name Reg. Address Name
0x00 TEMP_H 0x03 CONFIG

0x01 TEMP_L

0x02 STATUS 0x0B ID

✓ 13-bit mode: This requires to write 0x00 on CONFIG register. The 13-bit data will be located in the 13 MSBs of the 16-

bit sequence: TEMP_H|TEMP_L.

✓ Reading from the ID register results in 0xCB (manufacturer’s setting)

▪ Communication Protocol: This protocol runs on top of I2C. Writing/reading here refer to the process of writing/reading

to/from a register. This is a bit different from writing/reading data onto the I2C bus (what the I2C protocol specifies).
RA: ADT7420 internal Register Address of ADT7420. AD: Slave (ADT7420) I2C Address (0x4B). NACK: Not Acknowledge (1),

set by Master, ACK: Acknowledge (0). W: Write bit (0). R: Read bit (1). For AD, RA, DATA, MSB is sent first.

✓ Single-byte Write Sequence:
Master S AD (7-bit) W RA (8-bit) DATA (8-bit) P

Slave ACK ACK ACK

✓ Single-byte Read Sequence:
Master S AD (7-bit) W RA (8-bit) Sr AD (7-bit) R NACK P

Slave ACK ACK ACK DATA (8-bit)

▪ The basic controller is depicted on the right. The block

wr_reg_adt7420 is the most important: it handles
the I2C communication based on address, data and
write/read decision. Asserting the 𝑠𝑡𝑎𝑟𝑡 signal initiates

a transaction. When the operation is completed, the
signal 𝑑𝑜𝑛𝑒 is asserted for one clock cycle. If reading

data, it appears on 𝑜𝑑𝑎𝑡𝑎. A new transaction can be
started on the next cycle after 𝑑𝑜𝑛𝑒 = 1.

▪ FSM: It issues commands to configure one ADT7420

register (CONFIG) and then read (cyclically) from two of four 8-
bit ADT7420 registers (selected by the sel input). Data is fetched

on the output registers. Here, we can read the STATUS and ID
registers (0x02, 0x0B), or TEMP_H and TEMP_L (0x01, 0x00).

▪ wr_reg_adt7420: This circuit handles the I2C communication

with the ADT7420. The user provides address, data, and
read/write. Then, a read/write SPI transaction is executed. At
every transaction, we write or retrieve 8 bits of data.
✓ Circuit Design: It involves implementing the I2C protocol and

satisfying the ADT7420 timing parameters (see datasheet):
 tSU:DAT (Data Setup Time): 0.02 us.
 tHD:DAT (Data Hold Time): 0.03 us.
 fSCLK  400 KHz.

 tHD:STA (Hold Time – Start Condition): 0.6 us. Time SCL
must be 1 after SDA falling edge.

 tSU:STA (Setup Time – Start Condition): 0.6 us. Time SCL
must be 1 before SDA falling edge.

 tSU:STO (Setup Time – Stop Condition): 0.6 us. Time SCL
must be 1 before SDA rising edge.

 tBUF (Bus-Free Time  Start and Stop Condition): 1.3 us.
✓ For fSCL  400 KHz (TSCL  2.5 us), we have SCL_T  125 (at

clock = 100 MHz).
✓ To display data on LEDs or 7-segment displays, you need an

proper refreshment rate. We pick TSCLK=1 ms (fSCLK=1 KHz) →
SCLK_T=50103. There are about 35 SCL periods in a reading

transaction, thus data is refreshed at 35 ms per sample.
✓ FSM_SCL: It generates a clock of period SCL_T and 50% DC

along with rising and falling edge detectors. It also issued a
delayed falling edge detection signal zFhd: This is to allow

data to be kept for tHD:DAT after the falling edge. The clock
stops after the STOP condition (P) is issued.

done

sel

8
start
wr_rd

wr_reg_adt7420

odata

SCL SDA

FSM address

data

8

8

done E_l

E

8

E_h

clock

resetn

done

O
D

A
T

A
_H

SCL_T

E_h

E

8

E_l

O
D

A
T

A
_L

er

err
err

err

S1
resetn=0

address  0x03

data  0x80

wr_rd  1, start  1

0

1

address  0x02

done

S2

S3

data  0xXX

wr_rd  0, start  1

address  0x01
1

sel
0

01
done

S4

E_l  1

address  0x0B

S5

data  0xXX

wr_rd  0, start  1

address  0x00
1

sel
0

01
done

S6

E_h  1

1
err

0

er  0 er  1

1
err

0

er  0 er  1

1
err

0

er  0 er  1

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

9 Instructor: Daniel Llamocca

✓ FSM_ACK: It handles the detection of the Acknowledge bit (ACK), which is generated by the Slave. This operation is
repeated at many points in the design, thus we decided to have a separate FSM.

E
T

FSM_MAIN

wr_rdq

zR
zF

zFhd

Ei Ed Ea Eo

SDA

E

L

LEFT

E

L

LEFT

E

L

LEFT

1

s

2

0

2

8

8

0x4B

wr_rd
wr_rdq

dout

dout

dout

Ei

address

data

Ea

Ed

E

LEFT

din
Eo

8

E

Ewr

SDAi

Q

counter

0 to 7

E

sclr z
zQ

E
Q

sc
lr
Q

FSM_SCL

so

start_scl
stop_scl

Q

counter 0 to

SCL_T/2-1

E

sclr z
zTsc

lr
T

zR

wr_reg_adt7420

S1 resetn=0

SCL  1

ET, sclrT  1

0

1

SCL  1

zT

S2

S3

ET  1

ET, sclrT  1

zF  1

SCL  0

0

1

zT ET  1

ET, sclrT  1

zR  1

(T  0)

(T  0)

(T  T+1)

(T  T+1)

0

1

start_scl

(T  0)

FSM_SCL

L

done

odata

start

swr

so

T

FSM_ACK

err

st

0

Ewr sw
r

start_scl

stop_scl

zF zFhd

0
SCL

zR zFhd

SDAo

SDAoe

1

0

stop_scl

yes
T=THD-1 zFhd  1

no
dn

S1
resetn=0

0

1

zR

S2

S3

01
zFhd

0

1

st

FSM_ACK

1

0

SDAi err  1

dn  1

ACK

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

10 Instructor: Daniel Llamocca

✓ FSM_MAIN: It handles the I2C communication and complies with the ADT7420 timing parameters. Note that TBUF = 3
(30 ns). Also, data is kept for tHD:DAT after the falling edge of SCL (that is why we have the signal zFhd, which is issued
after tHD:DAT). Note that when the Slave is writing data, SDAoe=1.

S1

resetn=0

stop_scl  1,

SDAo  1

0

1

SDAo  so,

s  0

zFhd

S2

Ei  1

0

1

start

start_scl  1

L,Ei, Ea, Ed, Ewr  1

0

1

zQ EQ  1

EQ, sclrQ  1

0

1

zFhd

S4

Ea  1

0

1

zQ EQ  1

EQ, sclrQ  1,

st  1

1

0

wr_rdq

S8

S6

0

1

SDAo  so,

s  2

zFhd

S6

Ed  1

0

1

zQ EQ  1

0

1

zFhd

S10

Ei  1

0

1

zQ EQ  1

EQ, sclrQ  1

SDAo  1

S9

no

yes

qTBUF  qTBUF +1

SDAo  0,

start_scl, Ei, L  1

S1

qTBUF=TBUF-1

0

1

SDAo  0

zFhd

S3

st  1

0

1

SDAoe  1

dn

S3a

SDAo  so,

s  1

0

1

SDAoe  1

dn

S5

EQ, sclrQ  1,

st  1

0

1

SDAoe  1

dn

S7

0

1

SDAo 

not(wr_rdq)

zF

S8

stop_scl  1

SDAo  1

0

wr_rdqdone  1
1

qTBUF  0

S10

SDAo  so,

s  0

0

1

SDAo  1

zFhd

S11

st  1

0

1

SDAoe  1

dn

S12

0

1

zR

S13

Eo  1

0

1

zQ EQ  1

EQ, sclrQ  1

SDAoe  1

0

1

zFhd

S14

SDAoe  1

0

1

zFhd

S15

Ewr, swr  1

SDAo  1

S8

R/W=0

ACK

R/W=1

S1

1
err

0

S1

1
err

0

S1

1
err

0

S1

1
err

0

ACK

STOP
condition

if wr_rdq=1

SCL will stay at '1'
because stop_scl='1'

right when zF='1'

NACK

wr_rdq is forced
to '1' so we can exit

ACK

START
condition
and 7-bit

Slave
Address

Slave
Address

0x4B

Write
Register
Address

ACK

Write
Data

Read
Data

Wait until
falling edge

Wait tBUF

before a new
transfer can
be started

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

11 Instructor: Daniel Llamocca

I/O: DISPLAY AND KEYPAD

7-SEGMENT SERIALIZER (VHDL CODE)

DIGITAL SYSTEM (FSM + Datapath circuit)
▪ Most FPGA Development boards have a number of 7-segment displays (e.g., 4, 8). However, only one can be used at a time.
▪ If we want to display four digits (say inputs A, B, C, D), we can design a serializer that will only show one digit at a time on

the 7-segment displays.
▪ Since only one 7-segment display can be used at a time, we need to serialize the four HEX (or BCD) digits. In order for each

digit to appear bright and continuously illuminated, each digit is illuminated for 1 ms every 4 ms (i.e. a digit is un-illuminated
for 3 ms and illuminated for 1 ms). This is taken care of by feeding the output 𝑧 of the ‘counter to 0.001s’ to the enable

input of the FSM. This way, state transitions only occur each 0.001 s.
▪ Note: the input signals as well as the enable signals to the four 7-segment displays are active low (this is the proper

configuration for the Nexys A7-50T/A7-100T, Nexys 4-DDR).

▪ Generic Component: Behavior on the clock tick.

0.001 s counter (modulo-105): Free running counter
if Q = 105 - 1 then

 Q  0

 else

 Q  Q+1

 end if;

end if;

* z = 1 if Q = 105-1

▪ Algorithmic State Machine (ASM) chart: This is a Moore-type FSM.

1

S1
resetn=0

s  00

s  01

S2

s  10

S3

s  11

S4

E

E

E

E

1

1

1

0

0

0

0

4

4

4

4

0

1

2

3

2

HEX to 7
segments
decoder

2-to-4
decoder

4

A

B

C

D

s

7

buf buf(3) buf(2) buf(1) buf(0)

FINITE STATE MACHINE

resetn

Counter

(0.001s)

z

E

4

DATAPATH CIRCUIT

http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Vivado/Unit_7/serializer.zip

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

12 Instructor: Daniel Llamocca

LIQUID CRYSTAL DISPLAY (HD44780 COMPATIBLE)
▪ LCD modules: LCD and its controller. The Hitachi HD44780 is one of the most popular. It can display one 8-character line or

two 8-character lines. For detailed information, refer to the datasheet.
▪ HD44780: It includes two 8-bit registers:

✓ Instruction Register (IR): It stores instruction codes (e.g.: display clear, cursor shift).
✓ Data Register (DR): It temporarily stores data to be written/read into/from DDRAM (display

data RAM) or CGRAM (character generator RAM).
▪ Digital Interface I/O:

✓ RS: Selects register.
 0: Instruction register (for write). Busy flag (for read).
 1: Data Register (for write and read)

✓ R/W: Selects read (1) or write(0)
✓ E: Enable signals. It starts data read/write cycle.
✓ DB7-DB0: Bidirectional tristate data pins. Used for transfer data and receive between a hardware interface in an FPGA

or ASIC (or MPU in a microcontroller) and the HD44780. *There is a 4-bit mode where data is carried on DB7-DB4.

INTERFACING THE HD44780 TO THE FPGA
▪ IR, DR: Controlled via the interface (RS, E, DB). These signals make up the HD44780 instructions. Instruction categories: i)

Designate HD44780 functions, e.g.: display format, data length, ii) Set internal RAM addresses, iii) Perform data transfer
with internal RAM, and iv) Perform miscellaneous functions.

▪ Instruction codes (they apply to IR and DR) are shown below:

Instruction
Code

Description
Execution

Time RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

Clear display 0 0 0 0 0 0 0 0 0 1
Clear display, returns cursor to

home position (set maddress to 0)
1.64 ms

Cursor
home

0 0 0 0 0 0 0 0 1 -
Returns cursor to home position

without changing DDRAM contents
1.64 ms

Entry mode
set

0 0 0 0 0 0 0 1 I/D S
Set cursor move direction and

display shift (during data read/write)
40 us

Display
on/off ctrl

0 0 0 0 0 0 1 D C B
Sets on/off of display, cursor, and
blink of cursor position character.

40 us

Cursor/
display shift

0 0 0 0 0 1 S/C R/L - -
Moves cursor and shifts display

without changing DDRAM contents
40 us

Function set 0 0 0 0 1 DL N F - -
Sets interface data length (DL),

display lines (N), character font (F)
40 us

Set CGRAM
address

0 0 0 1 CGRAM address
Sets CGRAM address. CGRAM data
is sent/received after this setting

40 us

Set DDRAM
address

0 0 1 DDRAM address
Set DDRAM address. DDRAM data is

sent/received after this setting
40 us

Read busy
flag & AC

0 1 BF CGRAM/DDRAM address
Reads busy flag (BF) and address

counter (AC)
0 us

Write data 1 0 Data (to be written) Writes data into DDRAM or CGRAM 40 us

Read data 1 1 Data (read) Reads data from DDRAM or CGRAM 40 us

✓ Notes:
I/D: 0 (decrement cursor position), 1 (increment cursor position) S: 0 (no display shift), 1 (display shift)

S/C: 0 (move cursor), 1 (display shift) R/L: 0 (shift to the left), 1 (shift to the right)

D: 0 (display off), 1 (display on) C: 0 (cursor off), 1 (cursor on) B: 0 (cursor blink off), 1 (cursor blink on)

DL: 0 (4 bits), 1 (8 bits) N: 0 (1 line), 1 (2 lines) F: 0 (5x8 dots), 1 (5x10 dots)

BF: 0 (can accept instructions), 1 (internal operation in progress.

After execution of CGRAM/DDRAM data write or write instruction, the RAM AC (address counter) is incremented or decremented by
1. The RAM AC is updated after the busy flag (BF) turns off.

Display Data RAM (DDRAM)
▪ It stores display data represented in 8-bit character codes. Capacity: 80x8 bits (80 ASCII characters). Only 8 characters per

line shown; you can use Display shift (here, 7-bit DDRAM address shifts) to display more characters.
✓ 1-line display (N=0): 8 characters x 1 line.

DDRAM addresses (80): 0x00, 0x01, …, 0x4F.

✓ 2-line display (N=1): 8 characters x 2 lines.
DDRAM addresses (80): 1st line: 0x00, 0x01, …, 0x27.

 2nd line: 0x40, 0x41, …, 0x67.

RS

E

R/W

HITACHI hd44780
LCD Module

DB7-DB0

IR

DR

00 01 02 03 04 05 06 07

Display position

DDRAM address

1 2 3 4 5 6 7 8

01 02 03 04 05 06 07 08

4F 00 01 02 03 04 05 06

shift left

shift right

00 01 02 03 04 05 06 07

Display position

DDRAM

address

1 2 3 4 5 6 7 8

shift left

shift right

40 41 42 43 44 45 46 47

01 02 03 04 05 06 07 08

41 42 43 44 45 46 47 48

27 00 01 02 03 04 05 06

67 40 41 42 43 44 45 46

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

13 Instructor: Daniel Llamocca

Simplified interface (R/W = 0)
▪ With R/W=0, we only write on IR and DR. Data transfer occurs in one direction.

▪ The write timing diagram is depicted. Certain timing parameters (specified in
ns) must be satisfied for successful LCD operation.

▪ write_irdr: It reads input data (8-bit DBi, RSi: write on DR or IR), and issues

the signals DB, RS, E while meeting the timing parameters. Note: when E goes
back to 0, we wait 40 us (not Tcycle - PWEH +tH as per the timing diagram). This
ensures instructions are completed without having to read the BF signal.

▪ Based on ‘write_irdr’, we implement a basic LCD interface block that initializes the LCD (write set of instructions on IR),

and then writes data characters (ASCII, we only write on the DDRAM). This is usually the job of a microprocessor.
✓ Note: ‘Clear display’ and ‘Cursor Home’ are the only two instructions that take 1.64 ms. We must account for this delay

in the LCD interface. The table shows a basic set of instructions for LCD configuration.
 Instruction Description RS DB

Initial
LCD
Config.

Function set: 8-bit operation, 2-line display, 5x8 character font
Display on/off control (turns on display and cursor blink)
Entry mode set: address inc., cursor shift right, no display shift
Set DDRAM address: set address to 0 (write to DDRAM after)
Clear Display (wait 1.64 ms)

0
0
0
0
0

0x38
0x0F
0x06
0x80
0x01

Data
write

Write data (this can be continuously):
Move to 2nd line (set DDRAM address to 0xC0)
Move to 1nd line (set DDRAM address to 0x80)

1
0
0

8-bit
0xC0
0x80

RS

E

R/W

HITACHI hd44780
LCD Module

DB7-DB0

FPGA

0

IR

DR

Valid Data

E

RS

DB7-DB0

tAS tDSW

PWEH

tcycle

tH

tAH

1000

450
10

195
60

20

ED  1

S1

no

yes

qTAS  qTAS +1qTAS=TAS-1

s

E  0

S2

qTAS  0

no

yes

qPWEH  qPWEH +1qPWEH=PWEH-1

E  1

S3

qPWEH  0

no

yes

qT40u  qT40u +1qT40u=T40u-1

E 0

S4

done  1, qT40u  0

write_irdr

RSi

DBi
8

s

clock

resetn E

E

FSM

8

RS

DB

E

done

ED

TAS=6 (for T=10ns)

0

1

write_irdr
RSi

DBi 8

s

8

RS

DB

E

done

FSM

wr

DI
8

lcd

RSi  0, DBi  0x38, s  1

S1

dones  0
1 0

RSi  0, DBi  0x0F, s  1

S2

dones  0
1 0

RSi  0, DBi  0x06, s  1

S3

dones  0
1 0

RSi  0, DBi  0x80, s  1

S4

dones  0
1 0

RSi  0, DBi  0x01, s  1

S5

dones  0
1 0

S6

yes no
qT1.7m  qT1.7m+1qT1.7m=T1.7m-1qT1.7m  0

S7

wr

RSi  1, s  1,

DBi  DI

1

0

S8

done
0

S9

wr
0 1

1

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

14 Instructor: Daniel Llamocca

16-BUTTON KEYPAD
▪ To read data from 16 push buttons in a keypad, a straightforward approach is to use 16 wires.

▪ A more efficient approach is to arrange the 16 buttons into a 4x4 array. This requires only 8 wires, and a scanning method
is required to read data (we write on 4 wired, and we read from 4 wires). This is a more optimal approach (2𝑁 vs 𝑁2).

▪ Scanning Method:
✓ 4-bit col signal: We only activate one wire at a time (for 1 ms). Then, we read the 4-bit row signal, and detect which

one is activated (due to the configuration, at most only one row is activated). By detecting which row and col were
activated, we can determine which button the user pressed.

✓ Mechanical bouncing: This requires a debouncer on every row signal. However, this introduces a delay (longer than 1
ms), so we will most likely lose the detection of an activated row signal, as the col signal will have changed.
 Solution: the moment we detect a row signal that is activated (at that moment, we also capture the resulting button

value), we freeze the 4-bit col signal. We then wait until the user releases the push button to continue with the
updating of the col signal.

▪ Digital System: The figure depicts the digital system (FSM + Datapath)

✓ The wiring interconnection of the push buttons causes the 4-bit signals row and col to be active low.
✓ Ring Counter: it activates only one bit of the signal col every 1 ms (this is controlled by a 1 ms counter)

✓ Each of the 4 bits of row is debounced and a one-cycle pulse is issued (to indicate the user released the button).
✓ FSM: As soon as one row signal becomes active, we go into a state where we wait until the corresponding one-cycle

pulse is issued.
✓ row-col encoder: This combinational circuit generates the value of the button that was pressed based on the current

col value and the row value.
✓ If a bit of the row signal becomes activated at the same moment the 1 ms counter issues its pulse (rare occurrence),

then the ring counter will work (at the operating frequency) regardless of whether we stop the 1 ms counter. To avoid

this, the AND gate ensures that when EC=0, both the 1 ms and the Ring Counter are frozen.

✓ The output data (num) is issued with a one-cycle ‘done’ signal.

VCC

VCC

VCC

VCC

10K

10K

10K

10K

col3 col2 col1 col0

row3

row2

row1

row0

1 2 3 A

4 5 6 B

7 8 9 C

0 F E D

Ring
Counter

FSM

Counter

(0.001s)
z row-col

Encoder

Pulse
Detector

Debouncerrow0 rp0

trow0

E

tro
w

col

Er

tcol

E

E

44

4

Pulse
Detector

Debouncerrow1 rp1

trow1

Pulse
Detector

Debouncerrow2 rp2

trow2

Pulse
Detector

Debouncerrow3 rp3

trow3

rp

EC

num done

row

S1

resetn=0

Er  1

0

trow0

1

Er  1

0

trow1

1

Er  1

0

trow2

1

Er  1 trow3

1

EC  1

0

S2a
dn_d  1

rp0
1

dn_d

S2b

rp1
1

S2c

rp2
1

S2d

rp3
1

0

0

0

0

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

15 Instructor: Daniel Llamocca

PULSE-WIDTH MODULATION (PWM)

DEFINITION
▪ We generate a square wave where we control the Duty Cycle. Duty Cycle is specified as a percentage: from 0 to 100%.
▪ PWM can be used to vary the average voltage on an output pin. This can be useful (in lieu of a DAC) to control the brightness

of an LED, speed of a DC motor, volume of a tone in a speaker, etc.

DIGITAL SYSTEM FOR PWM (code available here)
▪ 𝑇𝑃𝑊𝑀 (Period of PWM signal in units of 𝑇𝑐𝑙𝑜𝑐𝑘): This is a parameter in the VHDL code. 𝑇𝑃𝑊𝑀 > 2

𝑇𝑃𝑊𝑀 = 𝑇𝑃𝑊𝑀 ∗
1

𝑓𝑐𝑙𝑜𝑐𝑘
.

For 𝑓𝑐𝑙𝑜𝑐𝑘 = 100 𝑀𝐻𝑧:

𝑇𝑃𝑊𝑀 = 500 → 𝑓𝑃𝑊𝑀 = 200 𝐾𝐻𝑧

𝑇𝑃𝑊𝑀 = 50000 → 𝑓𝑃𝑊𝑀 = 2 𝐾𝐻𝑧

▪ DC (Duty Cycle): Input signal with 𝑛𝐷𝐶 bits. 𝑛𝐷𝐶 = ⌈log2[𝑇𝑃𝑊𝑀 + 1]⌉

DC  [0, TPWM]. Note that DC is not specified from 0 to 100%, but rather

from 0 to TPWM. Note that the “step” of the DC depends on 𝑓𝑐𝑙𝑜𝑐𝑘. An

external circuit can retrieve the Duty Cycle in standard terms (0-100%)
and convert it to 0 to TPWM.

TRI-COLOR LEDS
RGB color can be controlled by varying (via PWM) the brightness of a Red, Green, and
Blue LEDs. We want to control the DC of each color component using NB=4 bits. So,
we need to map a signal from 0 to 2NB-1 to a signal from 0 to TPWM. Mapping formula:

𝐷𝐶(0 → 𝑇𝑊𝑃𝑀) = ⌊
𝑇𝑃𝑊𝑀

2𝑁𝐵 − 1
× 𝐷𝐶(0 → 2𝑁𝐵 − 1)⌋ ≈ ⌊

𝑇𝑃𝑊𝑀 × 𝐷𝐶(0 → 2𝑁𝐵 − 1)

2𝑁𝐵
⌋

DIGITAL CIRCUIT (code available here)
▪ Mapping circuit: The approx. formula optimizes hardware: we multiply and then

drop NB LSBs. DC (0-TPWM) never reaches TPWM, but the approx. is good enough.
▪ PWM frequency: 2 KHz (TPWM=50000, 𝑓𝑐𝑙𝑜𝑐𝑘 = 100 𝑀𝐻𝑧) provides a good color

variation. A high frequency breaks the linearity between the brightness and the DC.
▪ We can use more bits per color component, but we need more input signals. For NB=4, refer to hex tables (higher nibble).

MONO AUDIO OUTPUT
▪ Nexys-4 (DDR) Board: An analog low pass filter (connected after AUD_PWM) turns a PWM signal with varying DC (DC goes

from 0 to 100% and back) into a sinusoid. Use NB=8 bits.

DIGITAL CIRCUIT (code available here)
▪ Shaded circuit: It generates a square wave and it can be

connected to a buzzer or speaker, though we can only vary
DC ( volume). Only frequency can change the tone, i.e., we
need a new circuit where TWPM is an input signal.

▪ CTL: It produces a varying 8-bit DC (0→255→0, …). This
allows the integrator to generate a sinusoidal wave. The
variation rate is controlled by frq, i.e., we can pick from 8 sinusoidal frequencies.

▪ AUD_PWM: Open-drain output. AUD_SD: Analog filter shutdown input (via the AD8592 opamps). TPWM = 1000 (100 KHz).

PWMR
4 n

D
C

TPWM

RLED

GLED

BLED

TPWM

PWMG
4 n

D
C

PWMB
4 n

D
C

E_DC

FSM

Q

counter 0 to

TPWM-1

E

sclr

E
Q

sc
lr
Q

DC

n
D

C

oPWM

DCq
n
D

C
E

TPWM
S1

resetn=0

EQ, sclrQ  1

E_DC  1

 TPWM

oPWM  0

DCq

S2

S3

E_DC  1,

oPWM  1

oPWM  1, EQ  1

oPWM  1,

EQ  1

no

yes

Q=DCq-1

(Q  0)

(Q  Q+1)

E_DC  1
= 0

[1,TPWM-1]

DCq=1

no

yes

S4

oPWM  0

no
Q=TPWM-1 EQ  1

EQ, sclrQ  1

E_DC  1

yes

(Q  Q+1)

(Q  Q+1)
(Q  0)

PWM

8

n
D

C

TPWM

A
U

D
_
P
W

M

TPWM

0

AUD_SDSD

frq
3

QEPE

sclr

0→255

0→213-1

P  TM

TM13

1

frq
3

2frq+6-1

8

CTL LUT

CTL

http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html
http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

16 Instructor: Daniel Llamocca

PULSE DENSITY MODULATION (PDM)

DEFINITION
▪ Popular in mobile devices, only 1 bit is required. 1-bit signal is oversampled.
▪ The amplitude of a signal is represented by the relative density of the pulses: the closer the pulses are, the larger the

amplitude. Unlike PWM, the frequency of the pulses is not fixed.
▪ A PDM signal can be generated from an analog signal by using a sigma-delta modulator.
▪ Once PDM data is obtained, the analog signal can be recovered by passing the signal through an analog low-pass filter:

▪ If we want to get the PCM (pulse-code modulation)-coded signal to apply digital signal processing operations, we require a

digital decimation filter. The figure depicts a PDM signal oversampled by a factor of 𝑁 (over the Nyquist rate). The decimation

filter outputs a signal 𝑥[𝑛] (16 bits per sample) sampled at the Nyquist rate. To recover the analog signal from 𝑥[𝑛], a DAC

(digital-to-analog converter) is required.

MICROPHONE
▪ ADMP421: MEMS Microphone with PDM output

✓ CLK: 1 – 3 MHz. Recommended: 2.4 MHz.
✓ DATA: PDM signal (oversampled data)
✓ L/R: Left right stereo input control. L/R=0: Data captured on CLK rising edge. L/R=1: Data captured on CLK falling edge.
✓ Many MEMS microphones (e.g.: ADMP521, MP34DT02) feature a similar synchronous interface.

▪ ADMP421: Synchronous interface. Make sure to comply with the timing parameters (see ADMP421 datasheet).

▪ Once PDM data is obtained, the audio signal can be played back by passing the signal through an analog low-pass filter.

AUDIO OUT
▪ Nexys-4/Nexys-4 DDR: The on-board audio jack is driven by an analog low-pass filter. The input then can be a PDM or PWM

signal. The cut-off frequency is about 12 KHz. Stereo output is not supported.
▪ AUD_PWM: Open-drain output. AUD_SD: Analog filter shutdown input (via the AD8592 opamps).

AUDIO CAPTURE AND PLAYBACK ON THE NEXYS-4 DDR BOARD
▪ The figure depicts the connection between the MEMS microphone, the Artix-7 FPGA, and the mono audio output.

DIGITAL CIRCUIT
▪ As stereo output is not supported, we only retrieve a mono audio input

from the ADMP42 microphone (e.g. L/R = 0).
▪ Main frequency (Nexys-4 DDR Board): 𝑓𝑐𝑙𝑜𝑐𝑘 = 100 𝑀𝐻𝑧, 𝑇𝑐𝑙𝑜𝑐𝑘 =

10 𝑛𝑠.

CLK

DATAL/R SEL=0

DATAL/R SEL=1

pulse pulse

pulse pulse

+
Digital

Decimation
Filter

PDM signal 16

FPDM FPDM / N

N=64,128oversampled signal
by a factor of N

CLK

ADMP421

DATA

Artix-7 FPGA
Nexys-4 DDR

J5

H5

L/R SEL F5

AUD_PWM

AUD_SD

A11

D12

PDM_IN

SCLK

LR

+
Analog

Lowpass
Filter

PDM signal

Reconstruction filter

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

17 Instructor: Daniel Llamocca

Basic approach
▪ The figure depicts a simple circuit that reads data in a shift

register and immediately outputs the data. The rate at which
data is shifted in and out is given by SCLK. Be aware of
feedback when using this circuit.

▪ FSM_SCLK: It generates a free running clock of period
SCLK_T and 50% DC along with rising and falling edge

detectors. With an input clock of 100 MHz, we have that:

✓ For SCLK = 1 MHz → 𝑆𝐶𝐿𝐾_𝑇 =
1

1×106

1

10×10−9
= 100.

✓ For SCLK = 3 MHz → 𝑆𝐶𝐿𝐾_𝑇 =
1

3×106

1

10×10−9
≈ 34.

✓ For SCLK = 2.4 MHz → 𝑆𝐶𝐿𝐾_𝑇 =
1

2.4×106

1

10×10−9 ≈ 42.

Memory-based approach
▪ Here, data is read into the shift register and then stored it in memory. We can then control when we shift data out. We

might also store several audio sequences and select when to play them. Data is shifted in and out at the rate given by SCLK.
▪ Memory: It can store up to 𝑁𝐷 16-bit words.

✓ Address size: 𝑁𝐴 = ⌈log2 𝑁𝐷⌉.
✓ Total number of bits: 𝑁𝐷 × 16 bits.
✓ Duration of the stored sequence: 𝑁𝐷 × 16 × 𝑆𝐶𝐿𝐾_𝑇 × 𝑇𝑐𝑙𝑜𝑐𝑘. For example if 𝑁𝐷 = 218 and SCLK_T=42 we have 1.7616s.

To increase the duration, we can increase SCLK_T (SCLK_T  100), or we can increase the memory size.

▪ The main control circuit (FSM_MEM) varies according to the type of memory used. The memory might not operate at the
same frequency or might have different input/output ports than the ones shown. For example:
✓ On-chip memory (BlockRAMs inside Artix-7 FPGAs): Simple to use (we will use this one).

 BlockRAMs operate at the same frequency (100 MHz).
 BlockRAM I/O ports: specified in the figure.
 A BlockRAM behaves as a collection of registers: data requested/written is available on the next clock cycle. But the

capacity is limited (~ 0.5 MB in the XCA100T Artix-7 FPGA).
✓ External memories (e.g.: DDR2 RAM, Flash, SRAM): They require a different I/O interface and operating frequency;

however, they can hold much more data.

▪ The circuit requires a 16-bit shift register, a memory, and two state machines. The FSM_SCLK is also depicted.

LEFT

dout

zR

FSM_SCLK

'1' SCLK

Q

counter 0 to

SCLK_T/2-1

E

sclr z
zT

E
T

sc
lr
T

zR

zF

AUD_PWM
0

AUD_SD

16

din

E

PDM_IN

on

16

0
LR

FSM_MEMzR

LEFT

16

dout

Ep

H

counter

0 to 15

E

sclr z
zH

E
H

sc
lr
H

FSM_SCLK
start SCLK

Q

counter 0 to

SCLK_T/2-1

E

sclr z
zT

E
T

sc
lr
T

zR

zF

S1
resetn=0

ET, sclrT  1

0

1

SCLK  0

zT

S2

S3

ET  1

ET, sclrT  1

zR  1

SCLK  1

0

1

zT ET  1

ET, sclrT  1

zF  1

(T  0)

(T  0)

(T  T+1)

(T  T+1)

0

1

start

(T  0)

FSM_SCLK

ready_out

AUD_PWM
0

AUD_SD
in_RAMgen

ND words

in

address
en

we

16 16

16

din
E L

PDM_IN

start

'1'

NA

Lpsi R
A
M

_
w

e

R
A
M

_
a
d
d
re

ss

0
LR

out

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

18 Instructor: Daniel Llamocca

▪ FSM_MEM (using BlockRAMs inside Artix-7 FPGAs): Note how we embed the counter for RAM_address inside the FSM,

as well as counter H (this is optional).

S1

resetn=0

si  1

0

1

si  1

zR

S2

Ep  1

0

1

start

0

1

zH EH  1

EH, sclrH  1

si  1,

RAM_we  1

S3

no
RAM_address=ND-1 RAM_address  RAM_address+1

RAM_address  0

yes

0

1

si  1

zR

S4

Ep, Lp  1

RAM_address  RAM_address+1

S5

(H  H+1)

(H  0)

0

1

ready_out  1,

AUD_SD  1

zR

S5

Ep  1

0

1

zH EH  1

EH, sclrH  1,

Lp  1

no
RAM_address=ND-1 RAM_address  RAM_address+1

RAM_address  0

yes

yes
RAM_address=0

no

(H  0)

(H  H+1)

	Serial Communication
	Serial Data Transmission with UART
	Example: PS/2 Interface for Keyboard
	SPI (Accelerometer)
	I2C (Temperature Sensor)

	I/O: Display and Keypad
	7-segment serializer (VHDL code)
	Liquid Crystal Display (HD44780 compatible)
	16-Button Keypad

	Pulse-Width Modulation (PWM)
	Definition
	Tri-color LEDs
	Mono Audio Output

	Pulse Density Modulation (PDM)
	Definition
	Microphone
	Audio Out
	Audio Capture and playback on the Nexys-4 DDR Board

